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Abstract 

An exact definition of  the 44 lattice characters listed 
by Niggli is thoroughly  discussed and is e lucidated 
by examples.  In order  to represent  the characters  
graphically,  use is made  of  the projection of  the 
Niggli-reduced basis vector e on the a, b plane. Not  
only is the projected end point  o f c  restricted to certain 
domains  in the plane by the reduct ion rules - cf. 
International Tables for  Crystallography (1987), 
Chap te r  9.3 (Dordrecht :  Kluwer)  - but for given con- 
stants A, B and F in the Niggli-reduced form this 
polygonal  domain  contains the locus of  each of  the 
characters  as a vertex or an edge or the area  of  the 
polygon. For  each of  the cases a = b = c, a = b < c, 
a < b = c and  a < b < c, nine figures fully cover all 
alternatives determined by five special values F =  
A / 2 ,  O, - A / 4 ,  - A / 3  and - A / 2  and the four  open 
intervals between them. Also, all normal ized Buerger 
bases which are not Niggli-reduced bases are shown 
in the same figures. 

0108-7673/91/010029-08503.00 

1. Introduction 

It has been shown (International Tables, 1987, refer- 
red to as IT87  hereaf ter)  that  the reduced basis of  
any given crystal lattice can be elucidated graphical ly  
by the perpendicu la r  project ion of  the reduced basis 
vector e upon the a, b plane.  Because of  the rules for 
cell reduction,  only points within certain regions in 
that  plane are al lowed as a possible projected end 
point  of  c, a and b being considered as given vectors. 
Drawings  of  the a, b plane,  showing these regions for 
only a l imited number  of  typical cases, fully illustrate 
all rules of  cell reduction.  

The reduced cell which we here refer to is the cell 
in t roduced by Niggli (1928). Since some other  types 
of  reduced cell have been discussed recently (Gruber ,  
1989), we shall denote it fur ther  as the 'Niggli  cell', 
and its normal ized basis as the 'Niggli  basis ' .  

Closely related to Ntggli cells are the lattice charac-  
ters, which constitute a classification of  lattices 
based mainly on lattice symmetry expressed in the 

© 1991 International Union of Crystallography 



30 NIGGLI  LATTICE CHARACTERS 

Niggli-cell parameters. Therefore, as a logical 
extension of the above illustration principle, one 
could use such projection drawings in order to depict 
the characters as well. The present paper shows that 
all 44 lattice characters can indeed be portrayed in 
this manner. Moreover, all non-Niggli Buerger cells 
are indicated in the same figures. 

Clear definitions of Niggli's lattice characters in 
the existing literature are scarce - usually they are 
just listed in an unexplained table. Therefore, we shall 
first discuss this definition in a way which we hope 
will contribute to the understanding of the inherent 
simplicity of the lattice-character concept. 

2. Definition of lattice characters 

The 'lattice character'  has been introduced by Niggli 
(1928). It yields a classification of lattices which is 
much more refined than that offered by the Bravais 
types. Niggli defined it (not exhaustively, as we shall 
see) by stating that two lattices have the same charac- 
ter when the 'necessary relations' between the par- 
ameters A , . . . ,  F of their Niggli bases are identical. 
We shall call this condition the 'Niggli criterion'. 

The Niggli basis (cf. IT87) consists of three edges 
a, b and c of a Buerger cell. This means (Buerger, 
1957; IT87) that 

a + b + c = minimum (1) 

for the given lattice. It is normalized with regard to 
labelling of the cell edges by a, b and c, cf. the 
conditions (2), (4) and (6) below. The ensuing 'nor- 
malized form' of a Buerger cell is the set of the 
six numbers A = a . a ,  B = b . b ,  C = c . c ,  D = b . c ,  
E = a . c  and F = a . b .  This form is a complete 
description of the lattice, but it is not always unique 
because some lattices have two or more non- 
congruent Buerger cells, cf. Gruber (1973). 

However, for any lattice there is always just one 
Buerger cell - called 'Niggli-reduced cell' or just 
'Niggli cell' - which satisfies a certain set of 'special 
conditions' for the symbols A , . . . ,  F (Eisenstein, 
1851; Niggli, 1928; IT87). Gruber (1989) has shown 
that it can be given a geometric interpretation: if there 
are two or more Buerger cells, one of them has a 
larger 'deviation' (sum of the absolute departures of 
the three angles from 90 ° ) than the other(s), and this 
is the Niggli cell. Clearly, the normalized form of the 
corresponding 'Niggli basis' is a unique characteristic 
of the lattice. In what follows, the parameters 
A , . . . ,  F always refer to this 'Niggli form'. 

The 'necessary relations' are the equations in 
A , . . . ,  F following from the point-group symmetry 
of the lattice. Their number varies from 0 (triclinic) 
to 5 (cubic). If the above 'Niggli criterion' for two 
lattices to have the same character is satisfied, they 
have the same Bravais type as well (de Wolff, 1988). 

This is why characters can be used to find the Bravais 
type from a given Niggli form. 

As a first example, consider a primitive tetragonal 
(tP) lattice. The lattice symmetry produces four 
equations. Expressed in conventional lattice param- 
eters (subindex c), these equations are: ac = be, a~ = 
fl~ =2,~ = 90 °. So if the reduced basis coincides with 
the conventional basis (which occurs when c~ > a~) 
the four necessary relations are A = B and D = E - -  
F - -0 .  However, when cc < a~ the normalization rule 

A < - B < C  (2) 

prescribes a different labelling of the cell edges, with 
a along the fourfold axis. Then the necessary relations 
are B = C and D = E = F = 0. Because this set differs 
from the first, these two kinds of tP lattices have two 
separate characters. They have nos. 11 and 21 in the 
enumeration of sets of relations for 44 characters by 
Mighell & Rodgers (1969). Mighell's table is essen- 
tially identical to the table by Niggli (1928) except 
that the characters are numbered, in the sequence in 
which they are listed by Niggli. It also lists the Bravais 
type for each character. This numbered table will be 
called the 'Niggli table'. Obviously, if in the same 
range of lattices one puts ac--co, the lattice is no 
longer of type tP but it becomes the cubic primitive 
type cP. This has a fifth symmetry relation. It forms 
a separate character by itself, no. 3, with A -  B -- C 
and D =  E = F = 0 .  

To find the character of a lattice one obviously has 
to first find the values of its parameters A , . . . ,  F and 
then to check which of the 44 sets of relations in the 
Niggli table is fulfilled by these values. Suppose the 
lattice is of the cP type just dealt with, then clearly 
its parameters A , . . . ,  F fit the five relations just men- 
tioned. However, they also fulfil the four relations 
given above for no. 11 since these do not restrict C; 
and also those for no. 21 which leave A entirely free. 
Actually, there are several more characters of which 
the relations are obeyed although they are not the 
true solution. We shall call them 'subcharacters'  of 
the given lattice. As will be shown presently, it is not 
difficult to distinguish them from the true character. 

It may seem strange that the 'necessary relations' 
are not supplemented by inequalities which would 
completely delimit the range of each character. For 
instance, if to the above relations for no. 11 the 
inequality B < C is added they no longer overlap with 
those for no. 3. The reason for not doing so is that 
such limiting inequalities - though very simple in this 
case - are extremely complicated for characters of 
lower symmetry, where the relations themselves are 
often unrecognizable as symmetry relations. 

Since the relations stem from lattice symmetry, each 
subcharacter must correspond to a holohedric sub- 
point group (here 4/mmm) of the symmetry (here 
m3m) of the given lattice. Accordingly, the latter's 
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set of necessary relations contains those of all sub- 
characters as subsets. So the true character is always 
the one which comes first when the solutions are 
ordered in the following squence: 

cubic (5 relations); 
hexagonal, tetragonal or trigonal (4 relations); 
orthorhombic (3 relations); 
monoclinic (2 relations); 
triclinic (0 relations). 

(3) 

There is of course always a single solution with the 
largest number of relations. Among the subcharacters, 
however, two or more characters belonging to the 
same system may occur. The following example will 
serve to elucidate these facts: 

Suppose the lattice is given by its Niggli form: 

(ABCDEF)=(2 ,2 ,3 ,  -1,  -1,  0). 

Going through the Niggli table, one finds agreement 
for the following entries: 

no. 2, and nos. 14 and 25 for no. 4. As the last 
generation their triclinic subcharacters nos. 31 and 
44 appear; cf. the following table: 

Type I Type II Relations Bravais type 
2 4 A = B = C ,  D = E = F  hR 

10 14 A =  B, D =  E mC 
20 25 B =  C, E = F mC 
31 44 None aP. 

Each of the remaining 36 sets of relations defines 
cells of either type I only or type II only. This brings 
the total number of characters to 44, instead of the 
40 which would follow from the Niggli criterion 
alone. Since one of us has stated (de Wolff, 1988) 
that Niggli had missed some characters, it should be 
stressed that Niggli in his original table (Niggli, 1928) 
listed all 44; the remark referred to his figures only. 

The generation of the above eight characters from 
four sets of relations in no way interferes with the 
above procedure for character determination, except 
that the cell type has to be specified as an extra 
condition. 

with Bravais types: 
14, 15,16, 17, 37, 41, 42, 43, 44, 

mC tI oF mC mC mC oI mC aP. 

One sees immediately that the highest symmetry 
(tetragonal) occurs for no. 15 only; this is the true 
character of the given lattice. 

3. The cell-type criterion 

Apart from the 'necessary relations' criterion dis- 
cussed above, Niggli tacitly used an additional 
criterion for identifying characters. It has to do with 
the normalizing rules for D, E and F: the cell edges 
are labelled in such a way that these three parameters 
are 

either all positive (cell type I) (4a) 

or all non-positive (cell type II). (4b) 

The additional criterion for two lattices to have the 
same character is that their Niggli cells be of the same 
type (de Wolff, 1988). This 'cell-type criterion' causes 
a character to be split in two when the corresponding 
relations between A , . . . ,  F fit lattices with reduced 
cells of both types I and II. The splitting of a character 
is, as it were, inherited by each of its subcharacters, 
since the latter's range of lattices includes that of the 
former. So one can easily find the split cases by 
looking for them in the higher symmetries first. One 
finds that among these only the range of rhombohe- 
dral lattices for which A = B = C  and D = E = F  
splits up, viz into nos. 2 (type I) and 4 (type II). 
These characters have no orthorhombic and just two 
monoclinic subcharacters each, viz nos. 10 and 20 for 

4. 'First-hit' checking sequences 

The sequence in which the characters (or rather, sets 
of relations) were listed by Niggli (1928) was intended 
to allow identification of the character of a lattice by 
the first set of relations which is fulfilled by the 
lattice's Niggli-form parameters. From what has been 
said in § 2 about the relation with lattice symmetry, 
it will be clear that such a 'first-hit' sequence would 
already have been obtained by putting the characters 
in five successive groups of decreasing symmetry; this 
would make checking more difficult than Niggli's 
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Fig. 1. The regions 121 and/2 2 in the a, b plane, allowed by the 
minimum condition (1) and by the normalizing condition (4a, b) 
for the projection P of the end point of the vector c - assumed 
to head upwards - on this plane, for Buerger cells of type I (left) 
and II (right). The same regions are also indicated in all plots 
of Fig. 2 which show that their general shape is not greatly 
affected by variation of B/A and F/A from the arbitrary values 
chosen here. For several conditions in the Niggli table, the lines 
and the equations in D and E to which they correspond are 
shown (q is the line E = F). 
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F=A/2 F = O  F=-A/4 
b b 
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Fig. 2. The 44 lattice characters and all normalized non-Niggli Buerger cells, illustrated in the a, b plane. The four rows correspond to 
the partition (5) as indicated at the far right. In each row the value of  F/A decreases from left to right; special values are marked 
on top, and the plots in columns not thus marked apply to the open intervals in between. The vector a is identically the same for all 
36 plots and is shown in full only in the last column. The vector b is shown in full in the first row; in the other three only its direction 
is indicated. Whereas b = a for the second row (just as in the first row), b > a in the third and fourth rows. This is not directly seen 
in the figure. Graphical symbols are explained in Table 1. The character of  lattices corresponding to points P in the hatched areas 
is no. 31 in the first and second column, and no. 44 in the remaining columns. Wherever this area number also applies to a boundary 
segment it is printed alongside; similarly for any line segment and its end point(s) wherever they share a character. 
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grouping by cell type and by the equalities (if any) 
between A~ B and C. 

Gruber (1980) has noted that the Niggli table does 
not fully achieve the intended efficiency (for instance, 
in the above example, the correct character has no. 
15, not the lowest number, 14). He has proposed some 
interchanges to make it a real 'first-hit' table, and 
these have been incorporated in the 1983 and later 
editions of International Tables, which however retain 
the original character numbers, cf. Table 2. 

Even within the Niggli type of grouping, the 'first- 
hit' sequence is not unique. We can, for instance, 
change the order of the last 12 entries (now 40-35-36- 
33-38-34-42-41-37-39-43-44) into 36-33-38-34- 
40-35-42-37-39-41-43-44 and still hit the correct 
character first. 

5. Graphical representation 

As announced in § 1, we consider a plane containing 
the vectors a and b of the Niggli basis. The vector c 
is supposed to head upwards. All three vectors begin 
at the same origin O. We are interested in the perpen- 
dicular projection P of the end point of c on the 
a, b plane. Our aim is to ascertain the relation between 
the position of P and the character of the lattice. 

The general shape of this projected situation is 
illustrated in Fig. 1. Here it is important to realize 
that all points P of any line perpendicular to a rep- 
resent lattices with the same value of c.  a, that is, of 
E. This value is proportional to the line's distance x 
from O; it is E =(x/a)A,  provided x is given the 
appropriate sign, namely, positive in the direction of 
a. Similarly, a line perpendicular to b, at a distance 
y from O, represents all lattices with D = (y/b)B. 

It follows that the projection drawing can be seen 
as a plot of D and E as coordinates on (in general) 
oblique axes, marked D = 0 and E = 0 in Fig. 1, for 
fixed A, B and F. Then the only Niggli parameter 
not defined by the position of P in the plot is C. 

By the minimum condition (1), the region allowed 
for P is a polygon bounded by pairs of lines perpen- 
dicular to a and b, at distances of a/2 and b/2 from 
O (in Fig. 1 they are marked by their equation 2D = B 
or -B ,  and 2E = A or - A )  and by another pair of 
lines perpendicular either to a + b  at a distance 
a+b/2  from O (when F <0) orto a - b  at a distance 
la-bl/2 from O (when F >  0). Moreover, from this 
polygon only one quadrant remains because of the 
normalizing conditions (4a, b). This quadrant is a 
tetragon when F_> 0 and a pentagon when F < 0. We 
shall denote it by I21 and 02, respectively. Both are 
shown in Fig. 1 and again in the plots for all cases 
of Fig. 2. Point P may lie on their boundaries, but 
not on the D and E axes in O1 when F > 0, because 
of (4a). 

For given values of A, B and F the dependence of 
characters on the 'invisible' parameter C is so fortu- 

Table 1. Key to the graphical symbols used in Fig. 2 

(a) • [ ~  

(b) 0 

(c) [] :::::::::::::::::::::: 

(d) . . . . . . . . . .  

(e) . . . . . . . .  
(f) ............... 

Points, lines and areas 
corresponding to Niggli cells 
Points, lines and areas 
corresponding to non-Niggli Buerger 
cells 
Points and lines of  the boundary of  
O t which are excluded for P by 
(4a) 
The boundary of/2~ and 02 unless 
denoted otherwise 
The vectors a, b 
Auxiliary constructions 

nate that it can be represented by only four separate 
plots which are unique, i.e. where each point P always 
represents just one character. These plots are deter- 
mined by the conditions 

A = B = C ; A = B < C ; A < B = C ;  
(5) 

and A < B < C .  

[Although these conditions strongly resemble the four 
subheadings of the Niggli table, it should be stressed 
that they are really quite different. Conditions (5) are 
mutually exclusive; the subheadings are not.] 

The conditions in the body of the Niggli table all 
correspond to points or straight lines in the plot. By 
way of example, some of the lines are shown in Fig. 1 
together with the relevant equation. 

To finish this explanation of Fig. 2, we observe that 
there is one more normalizing condition for reduced 
bases: 

if A =  B, then IDI<_ IEI (6a) 

if B=C, then IEl_<lFI, (6b) 

Clearly, (6a) means that the regions O1 and 02 are 
halved symmetrically by the line D = E in the first 
two cases of (5). In the first and third cases, (6b) 
causes them to be truncated by the line q (E = F). 

For each of the four cases (5), Fig. 2 shows a row 
of nine different character plots, covering the full 
range of all six parameters A , . . . ,  F. This is achieved 
as follows: We consider A as an uninteresting scale 
parameter; B/A  and the invisible C are accounted 
for by the partition (5). For the plots in the third and 
fourth row of Fig. 2, an arbitrary value of B/A  > 1 
has been chosen. Any other value in this range would 
of course yield a different plot - but it would be 
equivalent to the one shown. Here, 'equivalent' means 
that it would contain the same characters, their 
domains (points, line segements or areas) delimited 
in exactly the same way by the corresponding vertices 
and edges of 12~ and 02, as well as by the line E = F 
mentioned above. 

Since D and E are the variable coordinates of each 
plot, the only remaining parameter is F. It has 'special' 
values A/2, O, - A / 3  and -A /2 ,  called 'special' 
because, for one or more of the cases (5), the corre- 
sponding plots are not equivalent (in the sense just 
defined) to those for values in the adjoining F / A  
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T a b l e  2. The parameters D = b .  c, E = a o c a n d F  = a.  b of  the 44  lattice characters ( A  = a .  a ,  B = b .  b,  C = c .  c) 

The character  o f  a lattice given by its Niggli form is the first one which agrees when the 44 entries are compa red  with that  form in the 
sequence given below. Such a logical order  is not  always obeyed  by the widely used character  numbers  (first co lumn)  which there fore  
show some reversals,  e.g. 4 and 5. 

Latt ice Bravais Trans format ion  to a 
No. D E F symmetry  type~t convent ional  basis Type  

A = B = C  
1 I A/2  A/2 A /2  Cubic cF 1 i l / 1  l i / l l  1 
2 I D D D Rhombohedral hR 110/101/111 
3 II 0 0 0 Cubic cP 100/010/001 
5 II - A / 3  - A / 3  - A / 3  Cubic cl 101/110/011 
4 II D D D Rhombohedral hR li0/101/TiT 
6 II D* D F Tetragonal t l  011/101/110 
7 II D* E E Tetragonal t l  101/110/011 
8 II D* E F Orthorhombic ol Ti0/i01/011 

A = B, no conditions on C 
9 I A /2  A/2 A/2  Rhombohedral hR 100/T 1 O~ 1i3 

10 I D D F Monoclinic mC 110/1 TO/001 
11 II 0 0 0 Tetragonal tP 100/010/001 
12 II 0 0 - A / 2  Hexagonal hP 100/010/001 
13 II 0 0 F Orthorhombic oC 110/110/001 
15 II - A / 2  - A / 2  0 Tetragonal tI 100/010/112 
16 II D* D F Orthorhombic oF 1i0/110/112 
14 II D D F Monoclinic mC 110/110/001 
17 I I D* E F Monoclinic mC 1 i0 /110/ i0 i  

B = C, no conditions on A 
18 I A /4  A/2 A/2  Tetragonal tl 0i l /1  iT/100 
19 I D AI2 A/2 Orthorhombic ol i00/0i!/ill 
20 I D E E Monoelinic mC 011/011/100 
21 II 0 0 0 Tetragonal tP O10/001 / 100 
22 II - B / 2 0 0 Hexagonal h P 010/001/100 
23 II D 0 0 Orthorhombic oC O11/011/100 
24 II D* - A / 3 - A / 3 Rhombohedral h R 121/011/100 
25 II D E E Monoclinic mC 011/011/100 

No conditions on A, B, C 
26 I A /  4 A /  2 A /  2 Orthorhombic oF 100/120/102 
27 I D A /  2 A /  2 Monoclinie mC i20/ i00/0 i l  
28 I D A/2  2D Monoelinic mC i00/102/010 
29 I D 2 D A / 2 Monoclinic mC 100/120/001 

- -  - -  

30 I B~ 2 E 2 E Monoelinie mC 010/012/100 
31 I D E F Triclinic aP 100/010/001 
32 II 0 0 0 Orthorhombic oP 100/010/001 
40 II - B / 2  0 0 Orthorhombie oC 010/012/T00 
35 II D 0 0 Monoclinic mP 010/100/00i 

- -  - 

36 II 0 - A / 2  0 Orthorhombie oC 100/102/010 
33 II 0 E 0 Monoclinic mP 100/010/001 
38 II 0 0 - A /  2 Orthorhombic oC TOO/120/001 
34 II 0 0 F Monoclinic mP 100/001/010 
42 II - B / 2  - A / 2  0 Orthorhombic ol TO0/OlO/112 
41 II - B / 2  E 0 Monoclinie mC 012/010/100 
37 II D - A / 2  0 Monoclinic mC 102/100/010 
39 II D 0 - A /  2 Monoclinie mC 120/l_00/00j 
43 II D t  E F Monoclinic mI 100/112/010 
44 II D E F Triclinic aP 100/010/001 

*2ID+E+FI=A+B. 
t As footnote * plus: 12D+ F[ = B. 
~: The capital letter of the symbols in this column indicates the centring type of the cell as obtained by the transformation in the last column. For this 

reason the standard symbols mS and oS are not used here. 

intervals. Moreover, a similar although very slight 
discontinuity occurs at F = - A / 4 ;  therefore we treat 
this as a special value as well. Within any one of the 
four open intervals of F in between the special values, 
only mutually equivalent plots occur. So in each row 
of Fig. 2 they figure as a single plot, for which F/A 
has an arbitrary value in the relevant interval. 

In order to facilitate orientation in the plots of Fig. 
2, the region O1 or 02 is indicated in each of them. 
The points, lines or areas corresponding to each 

character are indicated by the graphical symbols 
explained in Table 1. This table also explains symbols 
used for normalized non-Niggli Buerger cells, cf. 
Gruber (1973), all of which are illustrated in Fig. 2. 
Table 2 is a reproduction of Table 9.3.1 of IT87. 

Note that the above special values of F/A can be 
easily recognized by considering the position of the 
vertical q through the end point ofb (equation E = F) 
with respect to the vertices of O1 or 02,  see point Q 
in Fig. 1. 
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The authors express their gratitude to 
J. Jelinkov~i for preparing Figs. 1 and 2. 
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Abstract 

The twist and distortion of diffraction fringes in a 
convergent-beam electron diffraction pattern, caused 
by a dislocation in a ZnTe crystal, have been studied 
systematically. It has been found that the sense of 
such a twist reverses when the beam crossover changes 
from one side of the specimen to the other. From a 
qualitative consideration, it has been concluded that 
the diffraction fringes on the side pointed to by the 
vector u x c are shifted along b. This phenomenon can 
be used to determine the sign of the Burgers vector 
of a dislocation. 

1. Introduction 

Recently, progress has been made in studying disloca- 
tions in crystals by means of convergent-beam elec- 
tron diffraction (CBED). After the initial work of 
Carpenter & Spence (1982), it was proposed that 
diffraction fringes in the central disc may be used to 
determine the Burgers vector of a dislocation (Cherns 
& Preston, 1986; Cherns, Kiely & Preston, 1988; 
Tanaka, Terauchi & Kaneyama, 1988). Wen, Wang 
& Lu (1989) noticed that the zeroth-order Laue-zone 
(ZOLZ) pattern in the central disc is convenient for 
studying the geometry of dislocations, and they made 
extensive computer simulations to verify its feasibility 
in various dislocation cases (Lu, Wen, Zhang & Wang, 
1990). These authors also pointed out that the position 
of the convergent-beam crossover relative to the 
specimen can greatly influence the ZOLZ pattern, 
and thus it is important in determining the sign of 

* Project supported by the National Natural Science Foundation 
of China. 

the Burgers vector of a dislocation. In this paper, we 
report the investigation of the influence of disloca' 
tions in a II-VI semiconductor compound ZnTe crys- 
tal on diffraction fringes in the central discs in 
defocused CBED patterns. We make clear that both 
the value and the sign of Af can influence the detail 
characteristics of the distorted diffraction fringes. 

2. Experiments 

A ZnTe polycrystal was compressed along the crystal 
growing axis. The compressed crystal was sliced with 
a wire saw to about 200 t~m, and the surface normal 
of the slices is about 45 ° from the growing axis. The 
deformed ZnTe was ground and polished mechani- 
cally down to about 40 I~m. The specimens were then 
ion-beam thinned for the observation of transmission 
electron microscopy (TEM). 

The CBED experiments were carried out on a JEM- 
100CX(II) transmission electron microscope by 
lowering the specimen stage. The beam crossover can 
be moved above or below the specimen a distance Af 
by changing the objective-lens current with the 
FOCUS knob. Then the condenser-lens current is 
adjusted to form a pattern consisting of sharp spots 
under the imaging mode. Each spot in this pattern 
corresponds to an image (bright-field image or dark- 
field image). The defocus value Af is measured using 
the distance R of a dark-field image from the bright- 
field image (the center spot): Af= R/(20~) with 0B 
being the Bragg angle of this dark-field spot. In this 
paper, the positive sense of Af is taken downwards 
from the specimen along the optical axis. Owing to 
a defocus illumination, the shadow image of a dislo- 
cation and the distortion of diffraction fringes can be 
observed simultaneously. 
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